Abstract

To develop a metal-free biochar with high and inherent catalytic activity towards refractory and highly toxic contaminants in advanced oxidation processes, it is necessary to explore its reaction pathways and responsible catalytic sites. Herein, a metal-free biochar derived from corn cob (CCBC) was prepared and used for reaction pathway analysis during peroxydisulfate (PDS) activation. The pyrolysis temperature played an important role for regulating the biochar structure and properties, and CCBC obtained at 800 °C showed the best adsorption capacity and catalytic activity towards five typical organic pollutants, including 2, 4-dichlorophenol, Tetracycline hydrochloride, Ciprofloxacin, Methyl orange and Rhodamine B, due to its richer pore and defect structure. Further treatment of pharmaceutical wastewater demonstrated the good efficiency and potential of this metal-free catalyst for practical application. Radical (58% contribution) and non-radical (42% contribution) pathways were both found in CCBC/PDS system. More importantly, further redox experiments manifested that the carbon framework (defects, sp2-hybrid carbon, etc.) only made a contribution to the free radical pathway, while the ketone group (CO) of CCBC was proved to be mainly responsible for the non-radical pathway, namely the generation of singlet oxygen (1O2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.