Abstract

The objective of the article was to analyze the influence of psychrotrophic bacteria counts (PBCs) and somatic cell counts (SCCs) on the extent of lipolysis in bulk samples of cow's milk at reception and during cold storage. Samples of milk were analyzed on the day of sampling and subsequently during cold storage. The acidity, fat, density, chloride content, electrical conductivity (EC), bulk milk SCCs (BMSCC), and PBC values were analyzed on the day of sampling and the levels of acidity, EC, SCC, and PBC were analyzed during cold storage at 4 °C for 72 h. The SCC value 869 × 10(3) mL(-1) was higher than the recommended threshold. Lipolysis level at sampling day was related more closely with SCC than with PBC. There was no significant correlation between milk acidity and PBC among others parameters, while the milk mean density was only significant (P < 0.01) correlated with the fat content. The EC and chloride content were consistently correlated (P < 0.001) with BMSCC that allowed them to be used as indicators of mammary gland infection. The milk acidity, EC, PBC, and lipolysis levels increased in relation to the storage time at 4 °C. The lipolysis level during storage was in closer relation to the SCC, but not relation to the PBC. Effects of SCC and PBC on lipolysis decreased throughout the chilling period. It was concluded that initial lipolysis level and intrinsic milk lipoprotein lipase appear more effective than SCC and PBC on the development of lipolysis during storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.