Abstract

Modeling the rate of penetration of the drill bit is essential for optimizing drilling operations. This paper evaluates two different approaches to ROP prediction: physics-based and data-driven modeling approach. Three physics-based models or traditional models have been compared to data-driven models. Data-driven models are built using machine learning algorithms, using surface measured input features - weight-on-bit, RPM, and flow rate – to predict ROP. Both models are used to predict ROP; models are compared with each other based on accuracy and goodness of fit (R2). Based on the results from these simulations, it was concluded that data-driven models are more accurate and provide a better fit than traditional models. Data-driven models performed better with a mean error of 12% and improve the R2 of ROP prediction from 0.12 to 0.84. The authors have formulated a method to calculate the uncertainty (confidence interval) of ROP predictions, which can be useful in engineering based drilling decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call