Abstract
Porous wustite pellets were reduced with hydrogen at 900°C, and reduction curves, position of reaction zone and local fractional-reduction profiles were measured.Basic equations for the grain model were re-examined and solved as they were (unsteady numerical solution), and under quasi-steady (quasi-steady numerical one) and moreover linearization approximations (quasi-steady analytical one). When rate parameter values are selected suitably in each case, measured reduction curves and reaction zone behavior are comparatively well reproduced by the calculated results. Thiele's modulus is about 10-14 under the present experimental conditions and reaction fashion differs much from the one for unreacted-core shrinking model.When the unsteady numerical solution is calculated, reducible oxygen density is divided by M to reduce the computation time; the error at M≤2000 is within a permissible range, although the solution most faithful to the basic equations is obtained at M=1. Comparison between the unsteady and the quasi-steady numerical solutions shows that the latter is an approximate solution having rather good accuracy. The quasi-steady analytical solution is better than the others from practical viewpoint, because its computation time is the shortest and degree of agreement between the measured and the calculated results is much the same among the three.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.