Abstract

The standard deviation in a frequency modulated continuous wave radar distance measurement using a charge pump phase-locked loop (PLL) is calculated analytically. The phase noise of the PLL is modeled as an Ornstein-Uhlenbeck process resulting in a Lorentzian spectrum. We calculate the distance error as a function of the receiver noise bandwidth and the target distance. Depending on the frequency estimation algorithm and the target distance, the rms distance error due to PLL phase noise increases by about 6-9 dB with doubling the target distance. By contrast, the white noise in the radar receiver raises the distance error by about 12 dB in the far field with distance doubling, making this error contribution dominant for large target distances. These findings are verified by measurements on a scalable 61/122-GHz radar sensor platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.