Abstract

Introduction:The applications of fumigation and the challenges that high-containment facilities face in achieving effective large volume decontamination are well understood. The Biosecurity Research Institute at Kansas State University sought to evaluate a novel system within their biosafety level 3 (BSL-3) and animal biosafety level 3 agriculture (ABSL-3Ag) facility.Methods:The system chosen for this study is the CURIS® Hybrid Hydrogen PeroxideTM (HHPTM) system, comprising a mobile 36-pound (16 kg) device delivering a proprietary 7% hydrogen peroxide (H2O2) solution. To examine the system's efficacy in multiple laboratory settings, two BSL-3 laboratories (2,281 [65 m3] and 4,668 ft3 [132 m3]) with dropped ceiling interstitial spaces and an ABSL-3Ag necropsy suite (44,212 ft3 [1,252 m3]) with 21-foot (6.4 m) ceilings were selected. Biological indicators (BIs) of Geobacillus stearothermophilus (1.7 × 106 organisms) on steel spore carriers and H2O2 chemical indicators (CIs) were used to provide validation.Results:After cycle optimization, the smaller laboratory had a total of 60 BIs over two treatments that demonstrated a greater than 6-log reduction of bacterial spores. The larger laboratory (192 BIs) and the necropsy suite (206 BIs) had no BIs positive for spore growth when incubated at 60°C for 24 h per manufacturer's specifications.Conclusion:Overall successful results through multiple components of this study demonstrate that the HHP device, paired with the pulsed 7% H2O2 solution, achieved efficacy regardless of variables in laboratory size and layout. Perceived challenges such as 21-ft (6.4 m) ceiling heights, active equipment, and difficult to access ceiling interstitial spaces proved unfounded. Given the successful sterilization of all challenged BIs, the HHP system presents a useful alternative for high level decontamination within BSL-3 and ABSL-3Ag facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.