Abstract

Rainfall-induced landslide is a common natural hazard, and one of the disaster-causing factors is the loss of apparent cohesion that is mainly caused by the dissipation of matric suction. To analyze the rainfall-induced landslide, especially the post-failure behaviors, a matric suction model is proposed and incorporated into the Discontinuous Deformation Analysis (DDA). In this model, the matric suction is simplified as an equivalent line load and updated at each time step. The safety factor of the simple sliding model simulated by the extended DDA (DDA_c) showed a good agreement with the limit equilibrium method. The simulated relationship between runout distance and the degree of saturation of the multi-block sliding model was validated by the experimental results. Finally, a rainfall-induced landslide in Fukuchi-machi was simulated using the extended DDA. The results illustrated that the apparent cohesion loss is an important mechanism for landslide initiation and a crucial reason for the long-runout distance. The presented DDA_c can be served as a qualified tool to analyze shallow slope stability and post-failure behavior involving apparent cohesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.