Abstract

Propagation of electromagnetic waves in forest environments is examined in which both the transmitting and receiving points are located in the trunk layer of a four-layered anisotropic forest model. This propagation model considers the forest as a horizontally stratified, anisotropic media of canopy and trunk, bounded by ground below and air above. The electromagnetic fields are obtained using dyadic Green's functions in their eigenfunction expansion forms for an anisotropic four-layered geometry. Analytical results are found for the fields, which consist primarily of three wave modes: a direct wave, multiply reflected waves, and lateral waves. These field constituents are compared, and their domains of preponderance are calculated; it is found that the lateral wave plays a major role in communication at large distances. Radio losses for typical forest are calculated to illustrate numerical application of the forest model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call