Abstract

Equilibria of queueing networks are a means for performance analysis of real communication networks introduced as Markov chains. In this paper, the authors developed, evaluated, and compared computational procedures to obtain numerical solutions for queueing networks in equilibrium with the use of direct, iterative, and aggregative techniques in steady-state analysis of Markov chains. Advanced computational procedures are developed with the use of Gaussian elimination, power iteration, Courtois' decomposition, and Takahashi's iteration techniques. Numerical examples are provided together with comparative analysis of obtained results. The authors consider these procedures are also applicable to other domains where systems are described with comparable queuing models and stochastic techniques are sufficiently relevant. Several suitable domains of applicability are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.