Abstract

The influence of QED effects (including one- and two-electron Lamb-shift, Araki-Sucher term, one-loop self-energy, and finite nuclear size correction) together with non-adiabatic effects on the rovibrational bound states of H3 + has been investigated. Non-adiabaticity is modeled by using geometry-dependent effective nuclear masses together with only one single potential energy surface. In conclusion, for rovibrational states below 20 000 cm-1, QED and relativistic effects do nearly compensate, and a potential energy surface based on Born-Oppenheimer energies and diagonal adiabatic corrections has nearly the same quality as the one including relativity with QED; the deviations between the two approaches for individual rovibrational states are mostly below 0.02 cm-1. The inclusion of non-adiabatic effects is important, and it reduces deviations from experiments mostly below 0.1 cm-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call