Abstract

Pyrolysis has profound implications for coal as a raw material to make phase change material (PCM). It is necessary to derive a pyrolysis kinetic model for predicting the yield of volatiles and reaction performance during pyrolysis of coal, which is of significant importance for its thermal processing. The devolatilization of coal is characterized by thermogravimetric analysis (TGA) at different heating rates, and many kinetic models can be achieved by analyzing the TGA data. This work was aimed to find an appropriate model to describe the pyrolysis of coal and took Zhundong coal as an example. Four types of isoconversion kinetic methods, that is, Friedman, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Miura-Maki method, and different distributed activation energy models (DAEM) were employed here to fit TGA data for pyrolysis of Zhundong coal. The pre-exponential factors and activation energies obtained from different kinetic models were analyzed. An m-nth-DAEM was developed by considering that m classes of reactions took place with the same pre-exponential factor k0 but different distribution activation energy following logistic distribution or Gaussian distribution. The results showed that the FWO model was better for description of pyrolysis process of Zhundong coal, and the 2-nth-DAEM assuming Gaussian distribution of activation energy gave the best fit for the TGA data of Zhundong coal. The research provides a valuable reference to the development of thermal utilization technology of Zhundong coal.

Highlights

  • Energy storage technology can solve the contradiction between energy supply and demand in time and space, so it is an effective way to improve energy utilization [1]

  • The basic assumption of the isoconversional method is: under different conditions of temperature rise, the activation energy corresponding to the same conversion rate remains the same [18], and the pyrolysis is specified to be a first-order reaction, that is, n = 1

  • As a raw material for the preparation of phase change materials, coal is of great significance to energy utilization

Read more

Summary

Introduction

Energy storage technology can solve the contradiction between energy supply and demand in time and space, so it is an effective way to improve energy utilization [1]. 144 Phase Change Materials and Their Applications storage is widely used in industrial and civilian applications, so it occupies an extremely important position in the field of energy storage technology. Phase change materials (PCM) will absorb or release a large amount of latent heat for energy storage when the state of matter changes. As a raw material for the preparation of phase change materials, coal has great energy storage density, and the output temperature and energy are relatively stable, so it has good application prospects [2]. Zhundong coal is more environmentally friendly than other types of coal owing to its extremely low sulfur and ash contents, which has a great significance to coal industry [4, 5].

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call