Abstract

The dispersive properties characteristic to random media cause distortions in the propagating signal, particularly in pulse broadening and time delay. Theoretical analysis of pulsed signal propagation is usually based on spectral decomposition of the time-dependent signal in order to solve a reduced equation for the time-harmonic field. Consequently the space-time correlation properties are expressed as spectral integrals of the statistical moments of the wave field for different frequencies and different positions. For example the average shape of the signal intensity can be obtained from the two-frequency mutual coherence function, while the deviations from the average values can be estimated from the analysis of the fourth order spectral statistical moment. In this work we present a new reference-wave method and apply it to solving the equations governing propagation of the two-frequency mutual coherence function, and the fourth order multifrequency statistical moment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.