Abstract

The Pitot tube flowmetering technique has been used to measure pulsating flow from a vehicle engine exhaust. In general, flowmetering techniques that utilize differential pressure measurements based on Bernoulli's theory are likely to show erroneous readings when measuring an average flowrate of pulsating flow. The primary reason for this is the non-linear relationship between the differential pressure and the flowrate; i.e. the flowrate is proportional to the square root of the differential pressure. Therefore, an average of the differential pressure does not give an average of pulsating flow. In this study, fast response pressure transducers have been used to measure the pulsating pressure. Then the pulsating differential pressure is converted to the flowrate while keeping the pulsation unaveraged. An average flowrate is then calculated in the flowrate domain in order to maintain linearity before and after averaging. The peak amplitude of a pulsation measured here was about 1800 L/min at an average flowrate of 70 L/min when the engine ran at idle speed. This measurement has been confirmed by measuring the pulsation with a gas analyser. The results show a large amount of back and forth gas movement in the exhaust tube. This magnitude of pulsation can cause as much as five times higher erroneous results with the pressure domain averaging when compared to a flowrate domain averaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.