Abstract

The health risks of inhalation exposure to engineered nanomaterials in the workplace are a major concern in recent years, and hazard assessments of these materials are being conducted. The pulmonary surfactant of lung alveoli is the first biological entity to have contact with airborne nanomaterials in inhaled air. In this study, we retrospectively evaluated the pulmonary surfactant components of rat lungs after a 4-week inhalation exposure to three different nanomaterials: fullerenes, nickel oxide (NiO) nanoparticles and multi-walled carbon nanotubes (MWCNT), with similar levels of average aerosol concentration (0.13–0.37 mg/m3). Bronchoalveolar lavage fluid (BALF) of the rat lungs stored after previous inhalation studies was analyzed, focusing on total protein and the surfactant components, such as phospholipids and surfactant-specific SP-D (surfactant protein D) and the BALF surface tension, which is affected by SP-B and SP-C. Compared with a control group, significant changes in the BALF surface tension and the concentrations of phospholipids, total protein and SP-D were observed in rats exposed to NiO nanoparticles, but not in those exposed to fullerenes. Surface tension and the levels of surfactant phospholipids and proteins were also significantly different in rats exposed to MWCNTs. The concentrations of phospholipids, total protein and SP-D and BALF surface tension were correlated significantly with the polymorphonuclear neutrophil counts in the BALF. These results suggest that pulmonary surfactant components can be used as measures of lung inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.