Abstract

BackgroundThe foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive.ResultsIn order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction.ConclusionsWe have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV - host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.

Highlights

  • The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses

  • Similar to Hepatitis B virus (HBV), FV particle budding and release are instead dependent on co-expression of the cognate viral envelope (Env) protein; this function of FV Env that cannot be complemented by expression of heterologous viral glycoproteins [reviewed in [7]]

  • Peptide length and location influence function of tagged PFV Gag We set out to establish a collection of tagged PFV Gag proteins that retain most of their natural functions essential for FV replication

Read more

Summary

Introduction

The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. The FV Gag protein harbors many functional motifs described for other retroviruses (such as an PSAP late assembly (L)-domain, a cytoplasmic targeting and retention signal (CTRS) to mediate assembly at the MTOC, a coiled-coil domain essential for assembly, and a YXXLDL motive important for capsid morphology and reverse transcription), other motifs are either missing from FV Gag or if present, are unique amongst retroviruses [8,12,13,14,15] This includes the lack of C-terminal Cys-His boxes in Gag implicated in retroviral RNA packaging [reviewed in [3]]. Recently a chromatin-binding site (CBS) within GR-II was identified mediating attachment of FV Gag to host chromosomes [18]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.