Abstract

In the present work recently available experimental data for high-spin states of four nuclei, Te52124, Te52125, Te52126, and Te52127, have been interpreted using state-of-the-art shell model calculations. The calculations have been performed in the 50–82 valence shell composed of 1g7/2, 2d5/2, 1h11/2, 3s1/2, and 2d3/2 orbitals. We have compared our results with the available experimental data for excitation energies and transition probabilities, including high-spin states. The results are in reasonable agreement with the available experimental data. The wave functions, particularly, the specific proton and neutron configurations which are involved to generate the angular momentum along the yrast lines are discussed. We have also estimated overall contribution of three-body forces in the energy level shifting. Finally, results with modified effective interaction are also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.