Abstract
Fatigue properties of parts built by Additive Manufacturing (AM) are strictly related to process-induced defects and complex surface morphology. Several studies have proved that surface valleys act as crack initiation sites, similarly to surface micro-notches. However, different roughness parameters have been considered in literature for the depth of the surface notches, together with the adoption of a shielding factor. The aim of this study is to understand how the surface complexity of L-PBF (Laser-Powder Bed Fusion) AlSi10Mg cylindrical specimens in as-built condition can affect the fatigue behaviour. In detail, CT (Computer Tomography) scans were adopted to characterize the surface quality and 2D FE (Finite Element) analyses were used to calculate the local stress intensity factor at the most critical valleys in the surface. The results of the FE analyses were compared with a shielding factor determined for regularly spaced notches. In spite of the significant scatter, the average geometric factor value for surface notches in L-PBF surfaces is correctly predicted by the traditional shielding factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.