Abstract

Summary Close tolerance and good surface finish are achieved by means of grinding process. This study was carried out for multi-objective optimization of MQL grinding process parameters. Water based Al 2 O 3 and CuO nanofluids of various concentrations are used as lubricant for MQL system. Grinding experiments were carried out on instrumented surface grinding machine. For experimentation purpose Taguchi's method was used. Important process parameters that affect the G ratio and surface finish in MQL grinding are depth of cut, type of lubricant, feed rate, grinding wheel speed, coolant flow rate, and nanoparticle size. Grinding performance was calculated by the measurement G ratio and surface finish. For improvement of grinding process a multi-objective process parameter optimization is performed by use of Taguchi based grey relational analysis. To identify most significant factor of process analysis of variance (ANOVA) has been used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.