Abstract

In order to study the dynamic response of hydraulic cylinders under complex load conditions, the modal characteristics of hydraulic cylinders were simulated and calculated by comprehensively considering the combined effects of preload and oil fluid dynamics. The contact in the finite element model was specially processed to ensure that the local degrees of freedom of the piston in the structure were maintained during the modal simulation calculation process. After the static characteristics were calculated, the relevant data was imported into the modal simulation module to achieve coupling analysis under preload. By verifying the contact stiffness factor, the boundary conditions of the model were effectively optimized. The natural frequencies of the model were compared and analyzed under different piston strokes, and the mechanism of dynamic response was obtained. Through modal testing, the results indicated that the simulation results had high accuracy and reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call