Abstract

We study the class of preflow push algorithms recently introduced by Goldberg and Tarjan for solving the maximum network flow problem on a weighted digraph G(V,E). We improve Goldberg and Tarjanis O(n3) time bound for the maximum distance preflow push algorithm to O(n2√m) and show that this bound is tight by constructing a parametrized worst case network. We then develop the maximal excess preflow push algorithm and show that it achieves a bound of O(n2√m) pushes. Based on this we develop a maximum network flow algorithm for the synchronous distributed model of computation that uses at most O(n2√m) messages and O(n2) time, thereby improving upon the best previously known algorithms for this model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call