Abstract

One of the most serious concerns of extended-reach drilling is the dynamic behavior of the drillstring and the cleaning of well. Good cleaning requires an increased angular velocity. This paper presents a 3D nonlinear dynamic model of drillstring in a wellbore of 3D profile. The model suggests possible contact/lift-off of drill pipes with/from the wellbore wall. The interaction of lateral, torsional, and axial vibrations is taken into account. The relation between the normal component of contact force and the deformation of the wellbore wall is taken as quadratic-elastic. The friction force is described based on a hysteretic dynamic model. The friction force model also takes into account, the transition from a sliding to whirling. The equations of drillstring dynamics are solved numerically using the method of lines. The DYNTUB software is developed to analyze the drillstring time-varying processes under different loads. The program is used to study the effects of angular velocity, compression load, torque, friction factor, well profile, and availability of connectors on the drillstring dynamic behavior. From the study follows the key conclusions: (1) The friction factor has a considerable effect on the drillstring rotational behavior in the wellbore; (2) no whirling of drillstring at real value of rolling friction factor in a horizontal well in the discussed examples could be seen at all; (3) when whirling takes place, the contact force shows a dramatic times increase; and (4) snaking can be seen in any wells at moderate compressive load and angular velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.