Abstract

In the field of control, a wide range of analysis and synthesis problems of linear time-invariant (LTI) systems are reduced to semidefinite programming problems (SDPs). On the other hand, in the field of mathematical programming, a class of conic programming problems, so called the copositive programming problem (COP), is actively studied. COP is a convex optimization problem on the copositive cone, and the completely positive cone, the doubly nonnegative cone, and the Minkowski sum of the positive semidefinite cone and the nonnegative cone are also closely related to COP. These four cones naturally appear when we deal with optimization problems described by nonnegative vectors. In this letter, we show that the stability, the H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and the H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> performances of LTI positive systems are basically characterized by the feasibility/optimization problems over these four cones. These results can be regarded as the generalization of well-known LMI/SDP-based results on the positive semidefinite cone. We also clarify that in some performances such direct generalization is not possible due to inherent properties of the copositive or the completely positive cone. We thus capture almost entire picture about how far we can generalize the SDP-based results for positive systems to those on the four cones related to COP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.