Abstract

PurposeThe purpose of this study is to digitize the porous structure and reconstruct the geometry of the rock by using the image processing software photoshop (PS) and ant colony algorithm coded with compiler Fortran PowerStation (fps) 4.0 based on the microscopic image of a typical rock mass.Design/methodology/approachThe digital model of the microstructure of the porous coal rock was obtained, and imported into the numerical simulation software to build the finite element model of microstructure of the porous coal rock. Creeping flow equations were used to describe the fluid flow in the porous rock.FindingsThe simulation results indicate that the method utilized for reconstructing the microstructure of the porous coal rock proposed in this work is effective. The results demonstrate that the transport of fluid in a porous medium is significantly influenced by the geometric structure of the pore and that the heterogeneous porous structure would result in an irregular flow of the fluid.Research limitations/implicationsThe authors did not experience a limitation.Practical implicationsThe existence of the pores with dead ends would hinder the fluid to flow through the coal rock and reduce the efficiency of extracting fluid from the porous coal rock. It is also shown that the fluid first enters the large pores and subsequently into the small pore spaces.Social implicationsThe paper provides important and useful results for several industries.Originality valueImage processing technology has been utilized to incorporate the micro image of the porous coal rock mass, based on the characteristics of pixels of the micro image. The ant colony algorithm was used to map out the boundary of the rock matrix and the pore space. A FORTRAN code was prepared to read the micro image, to transform the bmp image into a binary format, which contains only two values. The digital image was obtained after analyzing the image features. The geometric structure of the coal rock pore was then constructed. The flow process for the micro fluid in the pore structure was illustrated and the physical process of the pore scale fluid migration in the porous coal seam was analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.