Abstract
An extensive study of population control techniques (PCTs) for time-dependent and eigenvalue Monte Carlo (MC) neutron transport calculations is presented. We define PCT as a technique that takes a censused population and returns a controlled, unbiased population. A new perspective based on an abstraction of particle census and population control is explored, paving the way to improved understanding and application of the concepts. Five distinct PCTs identified from the literature are reviewed: simple sampling, splitting-roulette (SR), combing (CO), modified combing, and duplicate-discard (DD). A theoretical analysis of how much uncertainty is introduced to a population by each PCT is presented. Parallel algorithms for the PCTs, applicable for both time-dependent and eigenvalue MC simulations, are proposed. The relative performance of the PCTs based on run time and tally mean error or standard deviation is assessed by solving time-dependent and eigenvalue test problems. It is found that SR and CO are equally the most performing techniques, closely followed by DD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.