Abstract

SummaryAlthough condensed aromatic components are considered to be one of the major structural units of soil humic acids (HAs) and to be responsible for the dark colour of HAs, their amount and composition remain largely unknown. In ruthenium tetroxide oxidation (RTO), condensed aromatic components are detectable as their degradation products, mainly benzenepolycarboxylic acids (BPCAs). We applied this technique to soil HAs with various degrees of humification (darkening). The yields of water‐ and dichloromethane‐soluble products from HAs upon RTO after methylation ranged from 210 to 430 mg g−1 and 10–40 mg g−1, respectively. Eight kinds of BPCAs with two to six carboxyl groups, and seven kinds of BPCAs with additional side chains (tentative assignment) were obtained as methylated counterparts. The yield of each BPCA and the sum of the yields of BPCAs (12–85 mg g−1 HAs) increased with increasing degree of humification and aromatic C content. The compositions of BPCAs indicated that the degree of condensation was greater in the HAs with greater degrees of humification. The sum of the yields of aliphatic compounds ranged from 0.1 to 6.5 mg g−1, and decreased with increasing degree of humification. The C12 to C30 monocarboxylic acid methyl esters accounted for > 56% of the aliphatic compounds assigned, which may be present mainly as end alkyl groups in the HA molecules. We also obtained the methylated counterparts of C14 to C24 dicarboxylic acids; these were possibly derived from polymethylene bridges between adjacent aromatic rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.