Abstract

The present study was designed to elucidate the contribution of non-stimulated random movement, stimulated random movement, antitubulin-resistant chemotaxis and antitubulin-sensitive chemotaxis to the casein-induced PMN migration into a micropore filter, evaluated by the leading-front technique. This analysis was conducted by a simplified test design including PMN migration, ( a) without casein; ( b) in a gradient of casein; and ( c) in casein without gradient. Treatment with the antitubulin SPI (a podophyllotoxin derivative) inhibited PMN migration within a casein gradient down to the level of the stimulated PMN random movement induced by casein. The casein-induced PMN chemotaxis measured by the leading-front technique is thus composed of stimulated random movement and antitubulin-sensitive chemotaxis without evidence of antitubulin-resistant chemotaxis. It is suggested that the anti-inflammatory effects of the antitubulins (colchicine, podophyllotoxin, Vinca alcaloids, griseofulvin) are due to an inhibition of the antitubulin-sensitive chemotaxis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.