Abstract

The purpose of this study was to develop a novel and sensitive method for the analysis of carbazole and polyhalogenated carbazoles (PHCs) in sediment using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Briefly, 5.0 g of freeze-dried sediment samples were extracted with dichloromethane using pressurized liquid extraction (PLE). The extract was purified with Florisil solid phase extraction cartridge, filtered through 0.22 µm polytetrafluoroethylene filter using a glass syringe, followed by LC-MS/MS analysis. Besides parameters for LC-MS/MS analysis, sample preparation procedures (including solvents for PLE, sorbents for cleanup, and filters for sample filtration) were optimized. The limits of detection and limits of quantification of target compounds were in the ranges of 3.0 × 10−3 to 0.22 ng g−1 dry weight (d.w.) and 1.0 × 10−2 to 0.75 ng g−1 d.w., respectively. The recoveries of target compounds in the spiked sediments at 2.0 ng g−1 d.w. and 10 ng g−1 d.w. were 64.8–91.8% and 70.9–124.7%, respectively, with relative standard deviations being less than 13.2%. Except that 36-BCZ had positive matrix effects of 63.3%, the sediment matrices generally displayed low or medium negative matrix effects on the other target compounds during LC-MS/MS analysis. The developed method was applied in the analysis of carbazoles and PHCs in sediment samples from Jiulong River, Fujian, China and all the target compounds were detected in the samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.