Abstract

BackgroundArtificial selection on quantitative traits using breeding values and selection indices in commercial livestock breeding populations causes changes in allele frequency over time at hundreds or thousands of causal loci and the surrounding genomic regions. In population genetics, this type of selection is called polygenic selection. Researchers and managers of pig breeding programs are motivated to understand the genetic basis of phenotypic diversity across genetic lines, breeds, and populations using selection mapping analyses. Here, we applied generation proxy selection mapping (GPSM), a genome-wide association analysis of single nucleotide polymorphism (SNP) genotypes (38,294–46,458 markers) of birth date, in four pig populations (15,457, 15,772, 16,595 and 8447 pigs per population) to identify loci responding to artificial selection over a period of five to ten years. Gene-drop simulation analyses were conducted to provide context for the GPSM results. Selected loci within and across each population of pigs were compared in the context of swine breeding objectives.ResultsThe GPSM identified 49 to 854 loci as under selection (Q-values less than 0.10) across 15 subsets of pigs based on combinations of populations. The number of significant associations increased when data were pooled across populations. In addition, several significant associations were identified in more than one population. These results indicate concurrent selection objectives, similar genetic architectures, and shared causal variants responding to selection across these pig populations. Negligible error rates (less than or equal to 0.02%) of false-positive associations were found when testing GPSM on gene-drop simulated genotypes, suggesting that GPSM distinguishes selection from random genetic drift in actual pig populations.ConclusionsThis work confirms the efficacy and the negligible error rates of the GPSM method in detecting selected loci in commercial pig populations. Our results suggest shared selection objectives and genetic architectures across swine populations. The identified polygenic selection highlights loci that are important to swine production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call