Abstract

An efficient, quick and low-cost extraction and clean up method for the determination of 14 polycyclic aromatic hydrocarbons (PAHs) in the agricultural water samples was optimized using gas chromatography-tandem mass spectrometry (GC-MS/MS). The extraction of the target compounds in water sample was carried out with acetonitrile, followed by partitioning promoted by the addition of salt. As a clean-up procedure, dispersive solid phase extraction was employed to purify the analytes of interest for GC-MS/MS analysis. This method was successfully applied for the quantification of PAHs in real water samples collected for the purpose of monitoring from the waterways located in Chungbuk (15 sites) and Gyeongbuk (6 sites), S. Korea. Phenanthrene (0.54 to 2.53 μg L-1) was detected in all the water samples collected from both the sites. Fluoranthene was detected in the water samples collected from the two sites in Gyeongbuk province, but other PAHs were not determined in these water sampling sites. Based on these results, the determined PAHs were conducted using an environmental risk assessment. The risk characterization ratios (RCRs) for phenanthrene ranged from 0.37 to 3.21. These RCR values referred to as risk was not controlled because RCR values of some sites were greater than 1. In conclusion, it is proposed that the optimized method in combination with GC-MS/MS could be successfully employed for the determination of PAHs in any environmental samples including water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.