Abstract

Interfacial reactions at the polycarbonate (PC)/FeCr-alloy interface during melt contact were studied as function of the Fe:Cr ratio within the alloy. Thin Fe/Cr films with lateral composition gradients were deposited by magnetron sputtering; the analysis of the films was done with microscopy and X-ray photoelectron spectroscopy (XPS). The local interfacial polymeric film formation could be therefore directly correlated with the Fe:Cr ratio. The local thickness and structure of the formed polycarbonate residue was analyzed by means of imaging ellipsometry, atomic force microscopy as well as Fourier-transform infrared spectroscopy under grazing incidence and XPS. Moreover, confocal fluorescence microscopy of the PC melt/alloy interface could reveal the formation of minor degradation products in the interphase region. The results show that already an Fe:Cr ratio of 2 : 1 leads to a strong inhibition of the thermal degradation in comparison to the unalloyed iron, and that in general, the enrichment of chromium in the passive film leads to an effective suppression of interfacial PC degradation. The data contributes to improving the mechanistic understanding of the role of iron during this process. Additionally, a critical concentration of chromium in the alloys used for PC processing can be deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.