Abstract

In present study, different blend compositions of polybenzimidazole (PBI) and polyvinylpyrrolidone (PVP) have been analyzed as polymer electrolyte membrane in single chambered MFCs. Four membranes namely, pure PBI, PBI/PVP 70:30, 50:50, and 30:70 blend ratios with increasing PVP content were casted, where the hygroscopic properties of the membranes were found enhanced with increasing PVP content. The membranes were characterized at room temperature (22+2°C) with different ion exchange (IEC) and proton conductive capacities, where an IEC of 0.06meqg−1, 0.15meqg−1, 0.24meqg−1 and 0.36meqg−1 and proton conductivity of 2.5×10−4, 4.8×10−4, 9.36×10−4 and 1.2×10−3Scm−1 were observed from pure PBI, PBI/PVP 70:30, 50:50, and 30:70 membranes respectively. As membrane electrode assemblies (MEA), the casted membranes were sandwiched in-between carbon cloths, where a maximum power and current density of 231.38±12mWm−2 and 1242±62mAm−2 were observed from 30:70 PBI/PVP fitted MFC, using mixed firmicutes as biocatalysts. A gross 84.36% COD removal from 30:70 PBI/PVP membrane indicated the added effect of PVP in blend composition with approximately 81% higher power over pure PBI membrane. The results indicate the potential efficacy of PBI/PVP blends as seperators in microbial fuel cell, for bio-energy conversion over pure PBI membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.