Abstract
In this paper, analysis of plastic deformation of high density polyethylene (HDPE) and polypropylene (PP) during an equal channel angular extrusion (ECAE) process is investigated. The effects of ram speed, number of passes, processing route and temperature are tested experimentally using a 135◦ die. The results show that the pressing force decreases with an increase in the number of passes and reaches a saturation state rapidly for routes A and C compared to routes BA and BC. Furthermore, it is found that the reduced curvature of the extruded samples is obtained by route C, however, the maximum warping is obtained by route A. A slight influence of temperature on the reduction of the warping is observed on the extruded samples. In order to predict the plastic strain inside the extruded samples, an elastic viscoplastic model is identified using compressive tests at different strain rates and coupled with the finite element method (FEM). A good correlation is found between the numerical modeling and experimental findings. FEM results show that the PP samples display a higher level of plastic strain compared to HDPE samples. However, almost the same degree of strain heterogeneity is obtained for both polymers. Finally, in order to reduce the warping and improve the strain homogeneity, a controlled back-pressure with small corner angle is expected to be an adequate solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.