Abstract

A quasi-one-dimensional model for the steady-state flow of a plasma in an ablative discharge capillary is presented for capillaries with non-constant cross- section. It is demonstrated that small modifications of the capillary geometry can lead to significant changes in the plasma exit parameters. In this respect, the possibility of obtaining an extended range of plasma parameters makes this type of ablative capillary a useful source of plasma for a variety of applications. Numerical solution of the equations of the model for the critical-flow case allows evaluation of the main fluid-dynamic and thermodynamic parameters of the plasma inside the capillary and at its exit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.