Abstract
The paper aims to analyze the demands of four-stroke naval pistons. To begin with, a brief analysis of the evolution of shipbuilding was made. Mechanical requests are produced by the gas pressure force and inertial force of the alternate moving masses. Under its action, the piston suffers an axial deformation. The thermal demands appearing in the engine are all the more important as the engine power is higher. The possibility of calculating them is more difficult due to the complexity of the thermogazodinamic phenomena in the engine cylinder. Thus, in the piston head, which comes in contact with both the hot gases and the fresh (much cooler) load, a non-stationary heat flow is installed which leads to a certain thermal regime of the engine. Considering the demands outlined in the last chapter, they lead to the conclusion that although the most unfavourable loading situation was considered as the maximum pressure during the processes and even exaggerated in establishing the working conditions, the piston is still close to the elastic limit. This demonstrates that the way of calculating the dimensions of the piston is correct and safe, as long as its constructive dimensions are not oversized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.