Abstract

Molybdenum dioxide (MoO2) is known for its catalytic activity toward reforming hydrocarbons. The objective of this study was to evaluate the effect of biofield energy treatment on physical, thermal, and structural properties in MoO2. The MoO2 powder sample was divided into two parts, one part was remained as untreated, called as control, while the other part was subjected to Mr. Trivedi’s biofield energy treatment and called as treated. Both control and treated samples were investigated using X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The XRD data exhibited that the biofield treatment has altered the lattice parameters, unit cell volume, density and molecular weight of the treated sample as compared to the control. The TGA study revealed that the onset temperature of thermal degradation of MoO2 was reduced from 702.87°C to 691.92°C. Besides, the FT-IR spectra exhibited that the absorption band corresponding to Mo=O stretching vibration was shifted to lower wavenumber i.e. 975 cm-1 (control) to 970 cm-1 in treated sample. Hence, above results suggested that biofield energy treatment has altered the physical, thermal, and structural properties in MoO2 powder. Therefore, the biofield treatment could be applied to modify the catalytic properties of MoO2 in pharmaceutical industries.

Highlights

  • Molybdenum is a well-known element, around 80% is utilized in steel industries to improve the corrosion resistance [1]

  • The decrease in lattice parameter and unit cell volume were supported by shifting of X-ray diffraction (XRD) peaks toward higher angles

  • An internal strain might induce in treated MoO2 after biofield treatment and that possibly resulted in alteration of lattice parameters and unit cell volume

Read more

Summary

Introduction

Molybdenum is a well-known element, around 80% is utilized in steel industries to improve the corrosion resistance [1]. MoO2 is used in rechargeable lithium ion batteries as anode material [3] It is used in solid oxide fuel cell (SOFC) as anode material because it has high fuel flexibility and electrical conductivity [4, 5]. The physical and thermal properties of MoO2 are controlled via various processes such as reduction of MoO3 [7], hydrothermal process [8], and thermal evaporation [9], etc. All these process are either require costly equipment setup or high temperature conditions to obtain the desired properties. It is important to search an alternative approach which can modify the physical and thermal properties of MoO2 powder

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.