Abstract
This paper takes the physical fitness test data and the physical health self-assessment data as the research objects. The decision tree algorithm is used to construct a decision tree model for students who fail to meet the physical test. Thus, the classification of students with different physical qualities is realized. The association rule Apriori algorithm is used to mine the association of physical fitness test indexes so as to judge the hidden law between students' physical fitness and behavior habits and get the correlation information of various physical health indexes. The back propagation (BP) neural network algorithm is used to establish the physical fitness test prediction model. By using these data mining models, this paper explores the hidden association information in college students' physical test data, which can provide more scientific and effective guidance for students' physical tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.