Abstract

he existence of oil-water transition layer brings a great trouble to the dehydration of oil gathering and transportation system. It leads to raising the electric current of dehydrator and becoming worse of the deoiling and dehydrating properties of the treatment equipment, resulting in the serious influences on oil recovery. For the efficient treatment of the transition layer, it is necessary clearly to understand the structure and composition of the layer. In this paper, the physical structure and chemical composition of the layer were systematically, layer by layer and phase by phase, analyzed by modern instrumental methods The results show that (1)the layer is an emulsion which is composed of oil, water and suspended solids. The water phase has characteristics of weak alkaline,high salinity and viscous polymer. The oil phase contains many natural emulsifiers such as colloid, asphaltene and so on. The solid phase mainly concludes FeS particle which plays a decisive role in suspended solids; (2) the typical transition layer is composed of water and oil which accounts for above 90%, the content of solid impurity, which controls the emulsion of the layer, is less than 10%. Compared with oil phase, the water content of typical transition layer is larger with the density of 0.9~1.0 g/L and high freezing point. The analytical data can be adopted for the treatment of oil-water transition layer and smoothly run operations for oil gathering and transportation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.