Abstract

We report analysis of phosphatase activity and inhibition on droplet-based microfluidic chips. Phosphatases are such attractive potential drug targets because abnormal phosphatase activity has been implicated in a variety of diseases including cancer, neurological disorders, diabetes, osteoporosis, and obesity. So far, several methods for assessing phosphatase activity have been reported. However, they require a large sample volume and additional chemical modifications such as fluorescent dye conjugation and nanomaterial conjugation, and are not cost-effective. In this study, we used an artificial phosphatase substrate 3-O-methylfluorescein phosphate as a fluorescent reporter and dual specificity phosphatase 22. Using these materials, the phosphatase assay was performed from approximately 340.4 picoliter (pL) droplets generated at a frequency of ~40 hertz (Hz) in a droplet-based microfluidic chip. To evaluate the suitability of droplet-based platform for screening phosphatase inhibitors, a dose–response inhibition study was performed with ethyl-3,4-dephostatin and the half-maximal inhibitory concentration (IC50) was calculated as 5.79 ± 1.09 μM. The droplet-based results were compared to microplate-based experiments, which showed agreement. The droplet-based phosphatase assay proposed here is simple, reproducible, and generates enormous data sets within the limited sample and reagent volumes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call