Abstract

Due to the advantages of Artificial Neural Network (ANN) for analyzing complex reaction system, the oxidation process of phenol in a pulsed discharge plasma system is simulated using an ANN model. Reaction factors including solution with pH values of 3.6, 5.4 and 9.8, and hydroxyl radicals (·OH) scavengers (Na2CO3 and n-butyl alcohol) are considered, and the changing trends of phenol degradation under various experimental conditions are simulated and predicted by the Back-Propagation (BP) neural network model. The obtained results show that the BP neural network model can effectively predict the degradation efficiency of phenol in the reaction system. According to the results, acidic solution is favourable for phenol oxidation and increase in the Na2CO3 and n-butyl alcohol addition will greatly restrain the phenol degradation. The restraining effect of scavengers on phenol degradation indicates that ·OH is one of most important active species for phenol oxidation in the pulsed discharge plasma system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.