Abstract

We investigate the influence of air holes on phase sensitivity in microstructured optical fibers to longitudinal strain. According to the numerical simulations performed, large air holes in close proximity to a fiber core introduce significant compression stress to the core, which results in an increase in the effective refractive index sensitivity to longitudinal strain. The theoretical investigation is verified by an experiment performed on four fibers drawn from the same preform and differentiated by air hole diameter. We show that introducing properly designed air holes can lead to a considerable increase in normalized effective refractive index sensitivity to axial strain from -0.21 ε-1 (for traditional single mode fiber) to -0.14 ε-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call