Abstract

Electrophysiological measures of neural activity frequently display oscillatory patterns at various frequencies. Furthermore, these oscillatory patterns can become dynamically synchronized across a wide region of the brain in a task-dependent manner. In this study, phase-locked oscillations in simultaneously recorded spike trains were analyzed using the wavelet cross-spectrum. Adaptation of the existent methods of calculating wavelet cross-spectrum to spike train data was straightforward. In contrast, new methods were needed for evaluating the statistical significance of the cross-spectrum. Although a permutation test based on a large number of re-sampled cross-spectra can provide a reliable estimate of statistical significance, this was quite time-consuming. As an alternative, statistical significance was determined with a normal probability density function estimated from a small number of re-sampled cross-spectra. When applied to neuron pairs recorded in the primate supplementary motor area, the re-sampling procedure produced a reliable outcome even when it was based on as few as ten re-sampled cross-spectra. These results suggest that the wavelet analysis in combination with a re-sampling procedure provides a useful tool to examine the dynamic patterns of temporal correlation in cortical spike trains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.