Abstract

High numerical aperture focusing is becoming increasingly important for nanotechnology related applications. Rigorous, vector evaluation of the focused field, in such cases, is usually performed using the Richards-Wolf method which is based on the Debye approach. The resulting field is known to have a piecewise quasi planar phase. A corresponding result, produced by a Fresnel-Kirchhoff integral for aplanatic optical systems of medium and low numerical apertures, leads to the well known physical fact that a quadratic phase exists when the entrance pupil is not located at the front focal plane. Yet, the amplitudes produced in both ways are in a good agreement. In this work we investigated the difference, presented above, in a 2D system with the help of the Stratton-Chu diffraction integral. The amplitude obtained by the Stratton-Chu integral was quite similar to the classic results while the phase exhibited a quadratic behavior, with the quadratic coefficient depending on the numerical aperture of the optical system. For lower numerical apertures it approached the result obtained by the Fresnel-Kirchhoff integral while for higher numerical apertures it was approaching the Richards-Wolf result. A mathematical expression for the quadratic coefficient was derived and verified for various values of numerical aperture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.