Abstract

BackgroundPhakopsora pachyrhizi, the causal agent responsible for soybean rust, is among the top hundred most virulent plant pathogens and can cause soybean yield losses of up to 80% when appropriate conditions are met. We used mRNA-Seq by Illumina to analyze pathogen transcript abundance at 15 seconds (s), 7 hours (h), 48 h, and 10 days (d) after inoculation (ai) of susceptible soybean leaves with P. pachyrhizi to gain new insights into transcript abundance in soybean and the pathogen at specific time-points during the infection including the uredinial stage.ResultsOver three million five hundred thousand sequences were obtained for each time-point. Energy, nucleotide metabolism, and protein synthesis are major priorities for the fungus during infection and development as indicated by our transcript abundance studies. At all time-points, energy production is a necessity for P. pachyrhizi, as indicated by expression of many transcripts encoding enzymes involved in oxidative phosphorylation and carbohydrate metabolism (glycolysis, glyoxylate and dicarboxylate, pentose phosphate, pyruvate). However, at 15 sai, transcripts encoding enzymes involved in ATP production were highly abundant in order to provide enough energy for the spore to germinate, as observed by the expression of many transcripts encoding proteins involved in electron transport. At this early time-point, transcripts encoding proteins involved in RNA synthesis were also highly abundant, more so than transcripts encoding genes involved in DNA and protein synthesis. At 7 hai, shortly after germination during tube elongation and penetration, transcripts encoding enzymes involved in deoxyribonucleotide and DNA synthesis were highly abundant. At 48 hai, transcripts encoding enzymes involved in amino acid metabolism were highly abundant to provide for increased protein synthesis during haustoria maturation. During sporulation at 10 dai, the fungus still required carbohydrate metabolism, but there also was increased expression of transcripts encoding enzymes involved in fatty acid metabolism.ConclusionThis information provides insight into molecular events and their timing throughout the life cycle of the P. pachyrhizi, and it may be useful in the development of new methods of broadening resistance of soybean to soybean rust.

Highlights

  • Phakopsora pachyrhizi, the causal agent responsible for soybean rust, is among the top hundred most virulent plant pathogens and can cause soybean yield losses of up to 80% when appropriate conditions are met

  • Since we are interested in identifying P. pachyrhizi transcripts abundant during the infection process to engineer a strategy of host resistance, knowing which genes are expressed as the earliest infection stage may be key

  • Energy production is highly active in urediniospores reflected by the abundance of transcripts encoding complexes I, IV, and V involved in oxidative phosphorylation and transcripts encoding proteins involved in glycolysis such as phosphoglucomutase, fructose-1,6bisphosphatase and triosephosphate isomerase

Read more

Summary

Introduction

Phakopsora pachyrhizi, the causal agent responsible for soybean rust, is among the top hundred most virulent plant pathogens and can cause soybean yield losses of up to 80% when appropriate conditions are met. Phakopsora pachyrhizi, the causal agent of soybean rust (SR), is among the top hundred most virulent plant pathogens. In the United States, soybean (Glycine max) is the only crop for which a yield effect has been reported from P. pachyrhizi infection. Infection has been reported on other crops in the U.S, but these infections are of limited scope with no apparent economic impact. These crops include scarlet runner bean, lima bean, and kidney bean. Kudzu and beggarweed have been identified in the U.S as non-crop host plants [1,2,3,4]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.