Abstract

A P-glycoprotein homologue (Pgh1) is believed to play a role in modulating levels of chloroquine resistance in Plasmodium falciparum. To study the role of Pgh1 in the mechanism of chloroquine (CQ) resistance, antisera were raised against this protein. There was no direct association between the level of Pgh1 expression and chloroquine sensitivity. We also failed to detect phosphorylation of Pgh1 in the food vacuole (FV), suggesting that other mechanisms regulate the chloroquine-resistant (CQR) phenotype. Therefore, high levels of expression of Pgh1 or phosphorylation of this protein in the FV could not account for CQ sensitivity. In addition, the lack of inhibition of CQ accumulation by anti-Pgh1 antibodies suggests that Pgh1 is not involved as a CQ transporter in the plasma membrane of P. falciparum. Furthermore, resistance reversers do not appear to act at the plasma membrane level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call