Abstract

We consider the problem of generating perfect samples from a Gibbs point process, a spatial process that is absolutely continuous w.r.t. a Poisson point process. Examples include area-interaction processes, hard-sphere models and Strauss processes. Traditionally, this is addressed using coupling from the past (CFTP) based methods. We consider acceptance-rejection methods that, unlike the common CFTP methods, do not have the impatient-user bias. Our key contribution is a novel importance sampling based acceptance- rejection methodology for generating perfect samples from Gibbs point processes. We focus on a simpler setting of hard-sphere models in a d-dimensional hypercube that we analyze in an asymptotic regime where the number of spheres generated increases to infinity while the sphere radius decreases to zero at varying rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.