Abstract

Using random peptide libraries we have previously shown that both mouse and rat class I molecules can exhibit different peptide length preferences. Such studies required expression of the particular class I molecules in RMA-S, a cell line deficient in the transporter associated with antigen presentation (TAP). For another rat class I molecule called RT1-A(u), however, we found that expression in RMA-S was poor and could not be increased sufficiently by incubation at 26 degrees C. To circumvent this problem we performed our studies on C58, a rat cell line that expresses RT1-A(u) naturally in the presence of a functional TAP transporter. Using C58 cells, cell-surface-expressed class I molecules were 'stripped' of peptides and beta(2)-microglobulin by washing the cells with an acidic citrate buffer (pH 3.3). Peptide stabilization assays, assessed by FACS analysis, were then performed using either specific peptides or synthetic random peptide libraries of different lengths (7-15 amino acids), supplemented with recombinant rat beta(2)-microglobulin. As a positive control an RT1-A(u)-specific nonamer peptide was designed using the previously determined peptide binding motif and this was found to bind to RT1-A(u) at nanomolar concentrations. Both length preference and importance of free N- and C-termini were tested using free base, formylated and acetylated peptide libraries. Results showed that RT1-A(u) was not able to accommodate N- or C-terminally blocked peptides but displayed a preference for peptides of 9-12 amino acids, similar to the preference observed for the RT1-A1(c) allotype, the other rat TAP-B-associated molecule tested thus far. These results suggest that length preference remains a consideration to explain the allelic class I-TAP associations of the RT1-A region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.