Abstract

An analytical analysis is presented of the transport and capture of magnetic micro/nanoparticles in a magnetophoretic microsystem that consists of an array of integrated soft-magnetic elements embedded beneath a microfluidic channel. The elements, which are polarized by a bias field, produce a nonuniform field distribution that gives rise to a force on magnetic particles within the microchannel. The equations governing particle motion are derived using analytical expressions for the dominant magnetic and fluidic forces. The magnetic force is obtained using an analytical expression for the field distribution in the microchannel combined with a linear magnetization model for the magnetic response of the particles. The theory takes into account particle size and material properties, the bias field, the dimensions of the microchannel, the fluid properties, and the flow velocity. The equations of motion are solved to study particle transport and capture. The analysis indicates that the particles exhibit an oscillatory motion as they traverse the microsystem, and that a high capture efficiency can be obtained in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.