Abstract
The use of Discrete Element Method (DEM) modelling is rapidly expanding as a modelling tool to analyse particulate processes and to address technological needs in various aspects of pharmaceutical, food and detergent processing industries. Examples include estimation of parameters that are difficult to measure or quantify experimentally (e.g. internal flow fields and mixing patterns) and facilitating the scale-up of particulate processes from laboratory to pilot plant. This article compares DEM simulations of particle flow in a paddle mixer to experimental measurements using Positron Emission Particle Tracking (PEPT). Good qualitative agreement is shown between DEM and PEPT in terms of flow patterns inside the mixer. Quantitative comparison of PEPT measurements and DEM analyses shows reasonable agreement in terms of velocity distribution. In general, the DEM is shown to be capable of predicting the dynamics of the particulate flow inside the mixer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.