Abstract

AbstractAn important characteristic of monomer‐starved nucleation in semibatch reactors is that the rate of growth of particles is controlled by the rate of monomer addition. The reduced rate of growth of particles prolongs the nucleation interval by slowing down the rate of emulsifier micelle depletion and forms a larger number of particles (Np). Model calculations show how Np varies with the formulation parameters as the monomer‐flooded nucleation shifts into monomer‐starved one. Particle formation in the intermediate conversion of interval III of the styrene batch emulsion polymerization also showed an enhancement because of a low rate of growth of newly formed particles. However, at a higher conversion, the rate of particle formation decreased significantly. Modeling results show that the reduction in the rate of particle formation at high conversions could not be simply explained by existing theories which rely on the decrease in monomer concentration in the aqueous phase as a means to explain the decrease in the rate of radical capture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call