Abstract
In actual production tests, there are large fluctuations in the ventilation rate and smoking resistance of cigarettes. In this paper, fluctuations in ventilation rate and smoking resistance are attributed to variations in the number of ventilation holes in the joint paper and the porosity of each component. The effects of small changes in porosity of each component were analyzed by using computational fluid dynamics methods. The results showed that the difference in the effective number of ventilation holes caused by the gluing process had little effect on the ventilation rate and smoking resistance of cigarettes in the practical production process. The smoking resistance is mainly affected by the structural parameters of filter tow and cut tobacco section in the length direction of cigarettes, the porosity of cigarette paper and packaging paper is positively related to the cigarette ventilation rate, the porosity of cut tobacco and the porosity of filter tow are negatively related to the cigarette ventilation rate, and the influence of shaped paper is the smallest. The results can provide technical and theoretical basis for the optimization of cigarette process parameters and the stabilization of ventilation rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.